

Space Shuttle Program

SSME Flight Readiness Review

November 15, 2001

Agenda

- Major Components
- Engine Performance
- First Flight ECPs None
- Special Topics
 - Engine 2052 Foreign Object Debris
 - LPOTP Nozzle Vane Cracking
- Material Review Reassessment

SSME Major Components

Engine	ME-1 (2049) Block IIA	ME-2 (2043) Block IIA	ME-3 (2050) Block II	
Last Hot-Fire	STS-100	STS-100	902-793	
Powerhead	6019	6013	6006	
Main Injector	6011	2033	2032	
MCC	6015	6006	6023	
Nozzle	4028	5004	5007	
Controller	F41	F55	F53 (1)	
HPFTP	6017	6015R4	8017	
LPFTP	4210	2130R3	6104	
НРОТР	8016R4	8021	8025R1	
LPOTP	2133	6001	2325	

(1) Changes from last hot-fire.

Predicted SSME Ignition Confirm Margins

	Margin Sigma			
			Block II	
Parameter	ME-1 (2049)	ME-2 (2043)	ME-3 (2050)	
HPFTP Minimum Speed	4.7	7.7	3.2	
Min/Max Ignition Pc	[1.9] 5.2		3.8	
Antiflood Valve Min Open	25.5	27.0	22.3	
HPFTP Max Turbine Temperature	4.9	9.7	5.3	
HPOTP Max Turbine Temperature	3.4	4.0	5.4	
HPOTP Min Turbine Temperature	7.9	8.5	8.9	
Preburner Max Purge Pressure	29.4	29.5	29.2	
POGO GOX Min/Max Pressure	20.1	9.8	12.8	

^[] Less than 3 sigma margin, however, 3.2 sigma using a run-to-run database

Predicted SSME Performance at 104.5% P.L.

At Engine Start + 200 seconds (MR = 6.032, OPI = 69 psia, FPI = 28 psia)

Parameter	ME-1 (2049) Sigma	ME-2 (2043) Sigma	Block II ME-3 (2050) Sigma	
HPFT Disch Temp A, Deg R HPFT Disch Temp B, Deg R HPOT Disch Temp A, Deg R HPOT Disch Temp B, Deg R HEX Interface Temp, Deg R	0.7	b [-2.9]	c [-2.3]	
	0.9	b [-3.3]	c -1.5	
	1.1	-1.0	-1.1	
	1.8	-0.1	-0.4	
	1.1	-0.6	-0.9	
HPFTP Speed, rpm	0.0	-0.9	c [-2.6] -0.9 1.0 0.3	
LPFTP Speed, rpm	-1.0	-0.8		
HPOTP Speed, rpm	-1.9	-0.2		
LPOTP Speed, rpm	1.0	-0.3		
OPOV Position, % FPOV Position, %	a [3.0]	-0.5	-0.4	
	1.3	-0.8	-0.8	
PBP Disch Pressure, psia	-1.3	0.2	0.9	
HPFTP Disch Pressure, psia	0.2	0.4	-1.8	
HPOTP Disch Pressure, psia	-0.5	0.4	1.3	
HPFTP U/N	6017	6015R4	8017	
LPFTP U/N	4210	2130R3	6104	
HPOTP U/N	8016R4	8021	8025R1	
LPOTP U/N	2133	6001	2325	

- [] Exceeds database two sigma
- a Effect of high efficiency HPFTP and low PBP Discharge Pressure
- **b** Unique powerhead influence, consistent with past operational history
- c High efficiency HPFTP

Predicted Redline Margins at 104.5% P.L.

	Margin Sigma		
			Block II
Parameter	ME-1	ME-2	ME-3
HPFT Discharge Temp ChA, Deg R	5.4	10.7	8.6
HPFT Discharge Temp ChB, Deg R	6.2	12.5	8.8
HPOT Discharge Temp ChA, Deg R	6.3	7.0	7.6
HPOT Discharge Temp ChB, Deg R	7.4	8.1	8.9
HPOT Discharge Temp ChA, Deg R	7.0	5.3	5.8
HPOT Discharge Temp ChB, Deg R	7.2	5.4	5.9
HPOTP IMSL Purge Pr, psia	5.9	6.2	8.1
HPFTP Coolant Liner Pressure, psia	16.6	16.0	
Low MCC Pc, psid			
Command-ChA Avg	21.9	20.3	22.4
Command-ChB Avg	25.4	23.3	25.9
FASCOS			
HPFTP	15.1	14.1	8.4
НРОТР	34.6	33.6	33.6

Broken Burr Ball Bit

- Issue
 - FOD found in Engine 2052 / Powerhead 6009
- Background
 - Burr ball bit found in main injector hot gas cavity during routine STS-105 post flight borescope inspections
 - Lodged in LOX post outer row secondary faceplate retainer hole
 - Piece size: .078" dia x .380" long (.388 grams)
 - Piece retrieved inspections revealed no discernable hardware damage
 - E2052 / PH 6009 Operational History
 - E2052
 - 5 starts / 2713 seconds (4 flights)
 - PH 6009 (used with Block IA E2039 and Block IIA E2052)
 - 11 starts / 5397 seconds (8 flights)
 - Engine performance as expected no performance or structural anomalies

Engine Cross Section / Hardware Geometry

SSME Powerhead / MCC / HPTPs

Burr Ball Bit Geometry

G. HOPSON 15 November 2001 Max. mass of broken burr ball bit = .5 grams

Broken Burr Ball Bit - Investigation

- Unable to determine timing or specific operation being performed when bit broken
 - Boundary Layer Coolant hole drilling most probable event
 - BLC holes maintain adequate cooling of MCC hot gas wall
 - Operation can be done at Canoga, SSC and KSC
 - 7 BLC holes required per design
 - Additional holes opened as needed (per specification and/or MR action)
 - BLC opening opportunities on E2052 / E2039
 - 12 BLC holes opened in June '95 (10 tests / flights since)
 - 7 BLC holes opened in February '99 (5 tests / flights since)
 - Operation improved in May '99
 - Standard drill bit replaced burr ball bit

FOD Assessment - Broken Burr Ball Bit

- All potential migration paths evaluated
 - Limited paths due to piece size and geometry
- Engine Coolant Circuit unaffected
 - Minimal blockage potential
 - Worst case isolated LOX post tip erosion (Crit 3)
- Impact potential minimal
 - Inadequate energy to cause damage
 - LPF discharge duct, HGM coolant duct and liner, fuel sleeves
 - Migration out BLC holes during operation
 - Potential to strike and rupture two nozzle tubes
 - No significant affect on engine performance, redline margins and ability to complete mission
 - Migration to HPTP turbines in zero g environment
 - Verified clean pre-flight with visual inspections and torque checks
 - Below safe impact size for heat exchanger

General Engine FOD Assessment

SSME Designed for Tolerance to FOD

- Inlet filters to screen out FOD prior to entry
 - Orbiter / tank, ASI, GOX, hydraulic, pneumatic
- Multiple element injectors
- Components with multiple passages, annuluses and manifolds
- Shielding as necessary (LOX post elements at hot-gas inlet of Main Injector)

Extensive Ingestion History

- Extensive successful hot fire experience validates engine FOD tolerance
 - > 2900 starts / > 955,000 seconds
- Exceptional tolerance to impact damage, of primary concern is FOD with potential for extensive system blockage

General Engine FOD Assessment

- Ground Test Validation and In Service Reviews and Inspections
 - Engine Acceptance Tests and Component Green Runs
 - Verify performance and structural integrity prior to delivery
 - Required of all major components
 - Performance and operational data review
 - Conducted after each hot fire test and flight
 - Tracked versus requirements and also trend analyses to confirm "within family"
 - External and internal pre-flight engine inspections
 - Per OMRSD and/or special requirements via RAR

General Engine FOD Assessment

- Order of magnitude reduction in occurrences of FOD in last 10 years
- Increased Employee Awareness and Sensitivity
 - Design Changes
 - Fabrication Improvements
 - Facility Upgrades
 - FOD Sources Controlled
 - Inspection Techniques Enhanced
 - Process / Planning Reviews focused on FOD prevention and control
 - Employee Ownership and Culture Change

Rationale for Flight

- Broken Burr Ball Bit
 - Limited potential to break a bit on flight engines
 - All potential migration paths evaluated with no significant effect on engine operation
 - Cooling capabilities unaffected
 - Minimal impact damage potential
- General FOD
 - SSME designed for tolerance to FOD
 - Ground test program and in service reviews and inspections validate hardware integrity prior to flight
 - Extensive successful hot fire history
 - Increased employee awareness

Issue

 Cracking of nozzle vane trailing edge fillet radii discovered in moderate time LPOTP nozzle

Background

- Penetrant inspection being completed as part of Block II retrofit
 - S/N 4877663: 20 starts / 7642 seconds
- Two prior occurrences of HCF induced vane cracks
 - 1) 16 vanes cracked (96 starts / 36,529 seconds)
 - 2) 2 vanes cracked (82 starts / 34,819 seconds)
 - Existing life limit per DAR 2956
 - Life limited to 18,129 seconds (50% fleet leader)
 - Penetrant Inspect at 9064 seconds (25% fleet leader)

Materials Analysis (S/N 4877663)

Crack Verified by Sectioning

- Trailing edge through wall
 - Pressure side length = .107"
 - Suction side length = .065"
- Pressure side initiation with apparent stable crack growth through to suction side
 - HCF initiation and propagation
 - Multiple initiation sites
 - No evidence of crack growth towards vane leading edge
 - Crack remains in vane fillet radius
 - Very little smearing of fracture surfaces
 - Suggests little relative displacement between fracture surfaces

Nozzle Vane Assembly Upstream View

Trailing Edge, Cracked Vane

Fabrication Process / Investigation

Casting and Fabrication Process

- Unchanged throughout program history
 - Not uncommon to require some blending of trailing edge radii to remove suspected casting defects

Investigation / Reinspections

- Additional penetrant inspections completed (heightened sensitivity to entire vane fillet radius)
 - Cracks characterized as "tight"
 - Pressure side of vane (crack initiation site) is "hidden surface" not normally inspected
- Cracking noted in 9 of 18 vane assemblies (50 total vanes)
 - Range in operational times from 4773 seconds to 37,500 seconds (fleet leader)
- Most all cracking located on trailing edge ID fillet radii
 - Some indications at trailing edge OD fillet radii

LPOTP Nozzle Histogram

Units Re-Inspected

Structural Assessment

- Preliminary analyses support tolerance to large trailing edge defects
 - Static Stress Assessment
 - Operational pressure is primary loading
 - Nominal stress state relatively low
 - Some peaking at both leading and trailing edges
 - Dynamics Assessment
 - Vane natural frequency is very high (~35kHz)
 - Well out of range of possible excitation sources
 - Quasi-static vane response to any dynamic loading (no amplification of dynamic loading)
 - Significant peaking at trailing edge with rapid decay
 - Fracture Mechanics Assessment
 - Initial parametric analysis shows tolerance to large defects
 - Critical Initial Flaw Size (CIFS) > .300"

Additional Actions In Work

Vane Inspections

- Penetrant inspection of all remaining available nozzles
 - Including pressure side fillet radii
- Dimensional inspection of representative sample of vanes
 - Including vane thickness and fillet radius

Materials Analyses

- Additional sectioning of indications from other nozzles
 - Confirm HCF cracking mechanism

Structural Analysis

- Completion of refined analysis
- Verify tolerance to defects and structural margins

Preliminary Rationale for Flight

- Extensive operational history with no performance or structural anomalies
 - Focused reinspection confirms cracking in 9 of 18 vane assemblies (50 total vanes)
 - Single Flight Reliability = 25,600 seconds
- Structural analysis supports tolerance to large defects
 - CIFS > 0.300" (max measured size = ~.200")
 - Consistent with fractography no evidence of crack growth towards leading edge

Significant MR/PR Review

	2049		2043		2050	
	MRs	* PMRB	MRs	* PMRB	MRs	* PMRB
Powerhead	86	39	102	52	134	71
MCC	20	9	31	13	19	8
Nozzle	110	75	103	44	87	46
Controller	1	0	0	0	4	0
HPFTP	207	89	168	82	196	35
LPFTP	66	30	64	27	67	28
HPOTP	240	81	148	64	173	62
LPOTP	38	15	36	16	48	12
Assembly Ops	123	49	126	46	167	62
Ducts/Interconnects	106	71	95	63	119	81
Totals	997	458	873	407	1014	405

Total PMRB MRs = 1270 Total MRs = 2884

All dispositions reassessed and found acceptable for flight.

^{*}MRs that would meet today's Rocketdyne PMRB criteria

SSME Certification of Flight Readiness

- Flight Readiness Review CoFR Exception
 - UCR A034411 LPOTP Nozzle Vane Cracking
 - Investigation and analysis ongoing
 - Finalized rationale for flight to be presented at Prelaunch Mission Management Team review

Endeavour STS-108 SSME Readiness Statement

• The Endeavour Main Engines are in a ready condition for STS-108 pending completion of open work.

G.D. Hopson Manager SSME Project J. S. Paulsen
Program Manager
Space Shuttle Main Engine